Alterations in Leg Extensor Muscle-Tendon Unit Biomechanical Properties With Ageing and Mechanical Loading
نویسندگان
چکیده
Tendons transfer forces produced by muscle to the skeletal system and can therefore have a large influence on movement effectiveness and safety. Tendons are mechanosensitive, meaning that they adapt their material, morphological and hence their mechanical properties in response to mechanical loading. Therefore, unloading due to immobilization or inactivity could lead to changes in tendon mechanical properties. Additionally, ageing may influence tendon biomechanical properties directly, as a result of biological changes in the tendon, and indirectly, due to reduced muscle strength and physical activity. This review aimed to examine age-related differences in human leg extensor (triceps surae and quadriceps femoris) muscle-tendon unit biomechanical properties. Additionally, this review aimed to assess if, and to what extent mechanical loading interventions could counteract these changes in older adults. There appear to be consistent reductions in human triceps surae and quadriceps femoris muscle strength, accompanied by similar reductions in tendon stiffness and elastic modulus with ageing, whereas the effect on tendon cross sectional area is unclear. Therefore, the observed age-related changes in tendon stiffness are predominantly due to changes in tendon material rather than size with age. However, human tendons appear to retain their mechanosensitivity with age, as intervention studies report alterations in tendon biomechanical properties in older adults of similar magnitudes to younger adults over 12-14 weeks of training. Interventions should implement tendon strains corresponding to high mechanical loads (i.e., 80-90% MVC) with repetitive loading for up to 3-4 months to successfully counteract age-related changes in leg extensor muscle-tendon unit biomechanical properties.
منابع مشابه
Effect of Exercise-Induced Enhancement of the Leg-Extensor Muscle-Tendon Unit Capacities on Ambulatory Mechanics and Knee Osteoarthritis Markers in the Elderly
OBJECTIVE Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would aff...
متن کاملBiomechanical response to hamstring muscle strain injury.
Hamstring strains are common injuries, the majority of which occur whilst sprinting. An understanding of the biomechanical circumstances that cause the hamstrings to fail during sprinting is required to improve rehabilitation specificity. The aim of this study was to therefore investigate the biomechanics of an acute hamstring strain. Bilateral kinematic and ground reaction force data were capt...
متن کاملAdaptation of the tendon to mechanical usage.
Tendons primarily function as contractile force transmitters, but their mechanical properties may change dependent upon their level of mechanical usage. Using an ultrasound-based technique we have assessed tendon mechanical properties in vivo in a number of conditions representing different levels of mechanical usage. Ageing alters tendon mechanical properties; stiffness and modulus were lower ...
متن کاملIsokinetic eccentric exercise can induce skeletal muscle injury within the physiologic excursion of muscle-tendon unit: a rabbit model
BACKGROUND AND PURPOSE Intensive eccentric exercise can cause muscle damage. We simulated an animal model of isokinetic eccentric exercise by repetitively stretching stimulated triceps surae muscle-tendon units to determine if such exercise affects the mechanical properties of the unit within its physiologic excursion. METHODS Biomechanical parameters of the muscle-tendon unit were monitored ...
متن کاملUltrasonic evaluations of Achilles tendon mechanical properties poststroke.
Spasticity, contracture, and muscle weakness are commonly observed poststroke in muscles crossing the ankle. However, it is not clear how biomechanical properties of the Achilles tendon change poststroke, which may affect functions of the impaired muscles directly. Biomechanical properties of the Achilles tendon, including the length and cross-sectional area, in the impaired and unimpaired side...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018